
Armin.Le.Grand@cib.de

EMF+ - Rework
How to abstract VectorData Imports

CIB SOFTWARE GMBH
LIBREOFFICE CONFERENCE ROME
OCTOBER 11TH, 2017

Agenda

> Motivation

> How is EMF+ used at all currently?

> Current Problems

> Basic Goals

> Where to place an EMF+ Interpreter

> How to implement that

> What to do with existing importers

> Preservation of original Data

> Sticking it all together

> State of this Change

> Missing Steps

> Future of this Abstraction

Motivation

> Long existing problems with the WMF/EMF/EMF+ formats
from MS
– We import to our own Metafile format

– It is similar to MS stuff, both are recording of Paint-Actions

– Similar because VCL is an (old) abstraction of WinGDI with the
intention to run system-independent

– WMF: Initial Format, encapsulates all commands of old WinGDI

– EMF: ‘E’nhanced MetaFile, similar, adopted to newer APIs

– EMF+: Based on EMF, binary data chunks added as ‘Comment’
Actions (exclusive or replacing parts of EMF), backward compatible

Motivation

> All those formats get interpreted at load time and converted
to our own Metafile format. The set of commands is not and
never was complete ;-(

> There is already code to read and hold that EMF+ binary data,
a flag is set to mark the Metafile to contain EMF+

> No interpretation of EMF+ binary data in this place

> Normal Metafile usage will not use those parts (e.g. ::Play())

> Not included in any transformation (::Move(), ::Scale(), …)

> Not used in ‘Break’ action

> Save/Load works due to binary data in comments being added

Motivation

> University of Dresden had (as many others) issues with
EMF+ e.g. containing visualizations of Molecule Data

> They looked for help and contacted CIB, so a cooperation
could be established

> There exist numerous bugs in that area anyways, so this
was a good opportunity to reorganize things

How is EMF+ used at all currently?

> There is an UNO API based renderer that uses Canvas
functionality

> Directly interprets our own Metafile and included EMF+

> Directly renders these to Canvas

> Used in Slideshow and EditViews

> Triggered when painting a Graphic that has the ‘EMF+’
Flag set

Current Problems

> No separation of interpretation and rendering (re-usability,
mixed code)

> A Subset of GDI+ is implemented

> Problems with OutDev target type Metafile (PDF, Printing, …)

> To extend, broad knowledge of two complex areas is needed

> Not all Canvas implementations are complete

> Quality of Canvas implementation vary widely on systems

> Setup of Canvas until rendering starts can take quite some time

> Resource usage is not controllable, a source of many crashes
(try to zoom in EditView)

Basic Goals

> The idea is to
– Separate interpretation and rendering

– Make contained graphic definitions reusable
● Further processing (break, change attributes, edit, …)
● Use in EditViews for visualization in a standard way
● Use it for processing (PDF, Print, ...)

Where to place an EMF+ Interpreter

> Can best be done using Primitives to fit seamlessly in the
existing tool chain (also UNO API capable)

> Simplest starting point is the existing MetafilePrimitive
– Encapsulates a Metafile

– Decomposes on demand and buffers

– Creates sequence of Primitives

– In use for quite some time (stable, proved)

So the obvious place for adding an EMF+ interpreter is inside
the decomposition of the MetafilePrimitive. This will be the
central and only place where Metafiles and EMF+ sub-contents
will be interpreted

How to implement that

> Can be speed up by reusing as much of the existing
interpreter as possible

> Interpretation binary EMF+ parts is the same, data
extraction is ‘prepared’
– Created data has to be adapted to primitive definitions

– Contained transformations and their relations have to be
reorganized (metafile is linear, primitives have tree structure)

– Embedding of ClipRegions needs to adapted in a similar way

What to do with existing Importers

> Nice-to-have, but not urgently needed

> Isolate existing WMF/EMF importers
– Get them out of intensively used modules

– Convert them to a BlackBox (no one needs their internals)

– Move return value to Primitives
● Currently a single MetafilePrimitive in a sequence<primitive>

> Took that opportunity, done that ;-)

Preservation of original Data

> Loading WMF/EMF/EMF+ imported to own Metafile

> On Save time, our own Metafile format is written

> Original Data is lost forever
– No way to profit later from enhancements of the importer(s)

– Is the User aware that the original data is not part of the created
ODF…?

> But wait – I did something similar for SVG import!
– SVG gets loaded, original data is preserved, decomposed on-demand,

original data saved in ODF, even offers BitmapEx fallback for part of
office that can not yet use primitives

> So – why not use that and abstract it? So I did exactly that ;-)

SVGGraphicData → VectorGraphicData

> Abstracted the proved SVG mechanism to all
VectorGraphicFormats

> All uniformly handled as described
– Preserve original Data: Kept and stored as Graphic in ODF

– Interpreted on-demand (use migrated importers), buffered

– Optional BitmapEx available

– Original accessible and exportable anytime (context menu)

Sticking it all together

> Isolation of existing WMF/EMF/EMF+ Importers, adapted
return data type to Primitives (MetafilePrimitive)

> Extension of the MetafilePrimitive Decomposer to EMF+
reusing and adapting the existing interpreter

> Unified handling of all VectorGraphicFormats with
preservation of the original Data

State of this Change

> All of the above implemented

> Some parts by me, some by Patrick Jaap from University of
Dresden

> I did initial transfer of modules, make it principally work

> Patrick adopted EMF+ interpretation

> He is fixing bugs and improving EMF+ interpretation

> He is taking over care for that part

> Good example of a well-working cooperation ;-)

Missing Steps

> Slideshow needs to be adapted to use Primitives
– Currently based on Metafiles

– Planned for some time, but was never done

– Needed to remove the direct renderer completely

Future of this Abstraction

> Imagine to extend this to all GraphicDataTypes
– Include Pixel formats

– All would preserve original data in ODF

> Imagine to add a central/automatic/hidden organizing Instance that
– Manages that data based on size/usage/timestamps

– Throws away unused sequences<primitive>

– Throws away/streams to TempFiles unused BinaryData (PGPed)

This would lead to a central, automated mechanism that would
completely replace all the existing SwapIn/SwapOut stuff that is old and
unstable anyways :-)

Just dreaming :-)

	Slide 1
	Agenda
	slide with border
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

