
www.CollaboraOffe.fom

The Future of OpenCL
in LibreOfce

Tor Lillqvist

Collabora Productivity

@TorLillqvist

@CollaboraOffe

What is OpenCL

● Vendor-neutral, architecture-agnostic
programming language for parallelized
computation

● Available on the three desktop platforms
we care about

● In practice, relevant mostly on Windows
● macOS: Apple not really that keen any longer
● Linux: a mess

What is OpenCL

● OpenCL code is quite C-like, with some
extra keywords and library functions related
to numeric calculations and for moving data
in/out of kernels

● The unit of execution is called a “kernel”

● A kernel is roughly equivalent to an OpenGL
shader

● Kernels compiled at run-time. Can also be
saved as platform-dependent binaries and
loaded from such

What does OpenCL look
like?

Sample FFT kernel

// This kernel computes FFT of length 1024. The 1024 length FFT is decomposed into
// calls to a radix 16 function, another radix 16 function and then a radix 4 function

__kernel void fft1D_1024 (__global float2 *in, __global float2 *out,
 __local float *sMemx, __local float *sMemy) {

 int tid = get_local_id(0);
 int blockIdx = get_group_id(0) * 1024 + tid;
 float2 data[16];

 // starting index of data to/from global memory
 in = in + blockIdx; out = out + blockIdx;

 globalLoads(data, in, 64); // coalesced global reads
 fftRadix16Pass(data); // in-place radix-16 pass
 twiddleFactorMul(data, tid, 1024, 0);

 // local shuffle using local memory
 localShuffle(data, sMemx, sMemy, tid, (((tid & 15) * 65) + (tid >> 4)));
 fftRadix16Pass(data); // in-place radix-16 pass
 twiddleFactorMul(data, tid, 64, 4); // twiddle factor multiplication

 localShuffle(data, sMemx, sMemy, tid, (((tid >> 4) * 64) + (tid & 15)));

 // four radix-4 function calls
 fftRadix4Pass(data); // radix-4 function number 1
 fftRadix4Pass(data + 4); // radix-4 function number 2
 fftRadix4Pass(data + 8); // radix-4 function number 3
 fftRadix4Pass(data + 12); // radix-4 function number 4

What does OpenCL look
like?

Host fode to fall it

// create a compute context with GPU device
context = clCreateContextFromType(NULL, CL_DEVICE_TYPE_GPU, NULL, NULL, NULL);

// create a command queue
clGetDeviceIDs(NULL, CL_DEVICE_TYPE_DEFAULT, 1, &device_id, NULL);
queue = clCreateCommandQueue(context, device_id, 0, NULL);

// allocate the buffer memory objects
memobjs[0] = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
sizeof(float)*2*num_entries, srcA, NULL);
memobjs[1] = clCreateBuffer(context, CL_MEM_READ_WRITE, sizeof(float)*2*num_entries, NULL, NULL);

// create the compute program
program = clCreateProgramWithSource(context, 1, &fft1D_1024_kernel_src, NULL, NULL);

// build the compute program executable
clBuildProgram(program, 0, NULL, NULL, NULL, NULL);

// create the compute kernel
kernel = clCreateKernel(program, "fft1D_1024", NULL);

// set the args values
clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *)&memobjs[0]);
clSetKernelArg(kernel, 1, sizeof(cl_mem), (void *)&memobjs[1]);
clSetKernelArg(kernel, 2, sizeof(float)*(local_work_size[0]+1)*16, NULL);
clSetKernelArg(kernel, 3, sizeof(float)*(local_work_size[0]+1)*16, NULL);

// create N-D range object with work-item dimensions and execute kernel
global_work_size[0] = num_entries;
local_work_size[0] = 64; //Nvidia: 192 or 256
clEnqueueNDRangeKernel(queue, kernel, 1, NULL, global_work_size, local_work_size, 0, NULL, NULL);

What does OpenCL look
like?

● OpenCL in LibreOffice uses kernels
generated at run-time, i.e. compiled from
Calc formulas

● Both the OpenCL-generating code and the
resulting OpenCL source are quite complex

● Debugging of OpenCL means modifying
the C++ code to emit printf() calls in
generated OpenCL

What does OpenCL look
like?

LibreOffe OpenCL generating fode

void OpAverageA::GenSlidingWindowFunction(
 std::stringstream &ss, const std::string &sSymName, SubArguments &vSubArguments)
{
 int isMixed = 0;
 ss << "\ndouble " << sSymName;
 ss << "_"<< BinFuncName() <<"(";
 for (size_t i = 0; i < vSubArguments.size(); i++)
 {
 if (i)
 ss << ",";
 vSubArguments[i]->GenSlidingWindowDecl(ss);
 }
 ss << ")\n";
 ss << "{\n";
 ss << " int gid0=get_global_id(0);\n";
 ss << " double tmp0 = 0.0;\n";
 ss << " double nCount = 0.0;\n";
 ss <<"\n";
...
 ss << " for (int i = ";
 if (!pDVR->IsStartFixed() && pDVR->IsEndFixed()) {
 ss << "gid0; i < " << pDVR->GetArrayLength();
 ss << " && i < " << nCurWindowSize << "; i++){\n";
 } else if (pDVR->IsStartFixed() && !pDVR->IsEndFixed()) {
 ss << "0; i < " << pDVR->GetArrayLength();
 ss << " && i < gid0+"<< nCurWindowSize << "; i++){\n";

What does OpenCL look
like?

Generated OpenCL fode

double tmp0_0_average(__global double *tmp0_0_0) {
double tmp = 0;
int gid0 = get_global_id(0);
int nCount = 0;
double tmpBottom;
tmpBottom = 0;

{int i;
i = 0;
if(i + gid0 < 220){

tmp = legalize(fsum_count(tmp0_0_0[i + gid0],tmp, &nCount), tmp);
}

i = 1;
if(i + gid0 < 220){

tmp = legalize(fsum_count(tmp0_0_0[i + gid0],tmp, &nCount), tmp);
}

i = 2;
if(i + gid0 < 220){

tmp = legalize(fsum_count(tmp0_0_0[i + gid0],tmp, &nCount), tmp);
}

i = 3;
if(i + gid0 < 220){

tmp = legalize(fsum_count(tmp0_0_0[i + gid0],tmp, &nCount), tmp);
}

...
i = 9;
if(i + gid0 < 220){

tmp = legalize(fsum_count(tmp0_0_0[i + gid0],tmp, &nCount), tmp);
}

}
if (nCount==0)
 return CreateDoubleError(errDivisionByZero);
return tmp*pow((double)nCount,-1.0);
}

The Past

● Formula Group: new concept in Calc and
its import filters

● When several contiguous cells in a column
are effectively the same formula, a single
“formula group” is used

● (Formula groups also used by the so-called
software interpreter, which does not use
OpenCL, but SIMD instructions, for long
SUM() formulas mainly)

The Past

● OpenCL implementation of most Calc operators
and functions (“opcodes”)

● Even formulas using strings were thought to be
suitable for OpenCL. Strings were UPPER-
CASED (!)

● Incomplete unit tests. Corner cases not checked:
Strings to be interpreted as numbers, empty cells,
empty string handling modes, error cases like
#DIV/0!

● Problems all over the place

The Past

● First attempt at sanity: Use OpenCL only
for formulas that use only “simple” opcodes
that can be checked for correctness, and
only for formula groups that are larger than
a minimum size

● Make the subset of opcodes and the
minimum size user-visible options

● Whitelist and blacklist of OpenCL vendor
implementations, also user-visible options

The Current

● Many corner case bugs fixed

● We no longer try to use OpenCL for strings

● Those OpenCL implementations that are
“trusted” have now been fairly well tested

The Current

● The user-visible options dropped. There is
no reason to let users try to use untested
likely broken code that might silently
corrupt their data

● OpenCL platform (driver) correctness is
tested at first start of fresh installation (or
profile). If found to be problematic, OpenCL
usage turned silently off

The Future

● OpenCL will be continued to be used for
well-tested Calc formula opcodes

● OpenCL could be used also for other
calculations where parallelisation could
help performance significantly
● Image format en/decoding?
● But: Most core developers have no useful

OpenCL access, and OpenCL has bad
“reputation” among them already

Collabora

● Collabora Ltd.
● Leading Open Source Consultancy
● 10 years of experience. 90+ People.

● Collabora Productivity Ltd.
● Dedicated to Enterprise LibreOffice
● Provides Level-3 support (code issues) to all

SUSE LibreOffice clients
● Architects of Microsoft OpenXML filters

FIN

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

